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Abstract: Non-invasive prenatal testing (NIPT) has become an important tool in prenatal screening, 
yet the question of “when to test for the best outcome” in clinical practice still largely relies on rule-
of-thumb time windows, and the impact of individual differences—especially maternal BMI—on 
testing effectiveness is often underestimated. This study proposes an individualized framework for 
determining the testing time that proceeds from dependence identification, nonlinear modelling, 
segmented risk evaluation, and global optimization.” We first use Spearman correlation and 
distance correlation to characterize the dependence structure between key variables and Y-
chromosome concentration, and then adopt a generalized additive model (GAM) to obtain an 
interpretable nonlinear baseline. Building on this, we derive optimal BMI segments via dynamic 
programming on model residuals, and construct an integrated risk function that simultaneously 
covers false negatives, false positives, and test failure, while incorporating a gestational-age penalty 
and an adjustment factor for “attainment status.” Finally, we perform a global search with simulated 
annealing over the feasible gestational window to obtain the optimal testing time for each segment. 
Empirical results show that, under the baseline scenario, the optimal testing times for the six BMI 
groups cluster around 10.0–11.7 weeks, which are overall substantially earlier than the actual 
testing weeks (by about 4.4–8.4 weeks). Risk decomposition indicates that the delay penalty 
dominates, and test-failure risk is higher in high-BMI groups. Under multiple error scenarios of 
light/moderate/severe perturbations, the optimal time essentially converges to around 10.0 weeks, 
indicating robust decision-making. For female-fetus samples, the constructed SVM classifier 
achieves an AUC of 0.9550 without relying on Y-chromosome information. The framework 
provides a reproducible and practical quantitative basis for individualized NIPT testing-time 
recommendations and female-fetus abnormality classification. 

1. Introduction 
Non-invasive prenatal testing (NIPT)[1], [2] analyzes fetal cell-free DNA in maternal peripheral 

blood through high-throughput sequencing to screen for common chromosomal aneuploidies at an 
early stage. Because of its safety and its high sensitivity and specificity, it has been widely used in 
clinical practice. However, the selection of testing time often follows a “one-size-fits-all window” 
rooted in experience, which fails to adequately reflect individual differences—particularly the 
impacts of maternal BMI[3], [4], gestational progression, and sequencing quality control indicators 
on the “attainment probability” and interpretive stability. 

Existing studies generally proceed along two paths. One line emphasizes biological priors 
centered on “fetal fraction/attainment thresholds,” supplemented by linear or semiparametric 
models to adjust for the effects of gestational age and maternal characteristics. The other introduces 
machine-learning models to directly model the probabilities of positive/negative outcomes and 
failure using multi-source features, with the testing time chosen by empirical or heuristic criteria. 
The former has advantages in interpretability but is limited in its ability to capture nonlinear and 
non-monotonic effects; the latter has stronger predictive power but often lacks a decision-

2025 9th International Workshop on Materials Engineering and Computer Sciences (IWMECS 2025) 

Copyright © (2025) Francis Academic Press, UK DOI: 10.25236/iwmecs.2025.014115



quantification framework that can directly connect to clinical costs. 
To address these shortcomings, this paper proposes, on a real clinical dataset, an integrated 

“statistics–learning–optimization” solution: use distance correlation and GAM[5], [6] to clarify the 
nonlinear roles of key variables; implement data-driven BMI segmentation via dynamic 
programming on residuals; construct an integrated risk function—“false negative/false positive/test 
failure + gestational-age penalty + attainment status”—that directly maps to clinical costs; and 
directly minimize this risk over the feasible gestational window via simulated annealing to obtain 
individualized optimal testing times for each segment. Furthermore, recognizing the inevitability of 
technical perturbations such as fluctuations in read depth, GC bias, and alignment rate, we define 
error scenarios of varying intensities under the same estimator to evaluate the stability of the 
optimal plan. Meanwhile, for the challenge of female-fetus classification without Y-chromosome 
information, we build an SVM-based classifier using multi-source features to complete the 
application pipeline. The overall framework yields the following highlights in experiments: BMI is 
automatically partitioned into six segments; under the baseline, optimal times concentrate around 
10–12 weeks and are overall earlier than the actual testing time; the delay penalty is the dominant 
risk component; test-failure risk is higher in high-BMI groups; under error scenarios, optimal times 
robustly converge to around 10 weeks; and the female-fetus classifier attains a high AUC with 
interpretable importance clues. Collectively, these results indicate that, compared with a fixed 
window, individualized timing recommendations can significantly reduce overall risk without 
compromising classification performance, providing a basis for optimizing clinical workflows. 

2. Methods 
2.1 Data Preprocessing and Label Construction 

After standardizing fields, denoising, and handling missing values in the raw data, we unify 
measurement units and apply logarithmic/standardization transforms to skewed continuous 
variables to alleviate heteroskedasticity. Centered on the three types of events that need to be 
modeled in subsequent risk evaluation, we construct binary labels: 

 𝑌𝑌FN = 𝟏𝟏{Genetically abnormal but NIPT indicates healthy } (1) 

 𝑌𝑌FP = 𝟏𝟏{Healthy but NIPT indicates abnormality } (2) 

 𝑌𝑌fail = 𝟏𝟏{Detection invalid} (3) 

used to estimate 𝑃𝑃�FN,𝑃𝑃�FP,𝑃𝑃�fail . At the same time, we retain the “valid detection probability” 
𝑃𝑃�valid and the gestational-age penalty and attainment adjustment factor needed subsequently in the 
risk-function components so they can be linked within a unified framework. 

2.2 Dependence Identification and GAM Modeling 
To identify the dependence structure between key covariates and the response, we first 

characterize monotonic relationships with Spearman’s rank correlation, and then test for more 
general (including nonlinear and non-monotonic) dependence using distance correlation (dCor). 
The definition of dCor is: 

 dCor(𝑋𝑋,𝑌𝑌) = dCov(𝑋𝑋,𝑌𝑌)
�dVar(𝑋𝑋) dVar(𝑌𝑌)

∈ [0,1] (4) 

which equals 0 if and only if the variables are independent, compensating for the blind spot of 
rank correlation with respect to non-monotonic patterns. With multiple-testing correction and 
interval estimation, we use dCor to confirm significant nonlinear dependence between gestational 
age, BMI, age, fetal-health[7], [8] indicator, etc., and concentration, with X-chromosome 
concentration most strongly associated with concentration (see Table 1), laying the groundwork for 
subsequent nonlinear modeling. 
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Table 1: Significance test results of distance correlation coefficients 

Variable dCor 95% CI Effect size Significance 
X-chromosome concentration 0.514 [0.465, 0.561] Large *** 

Maternal BMI 0.165 [0.123, 0.223] Small *** 
Age 0.145 [0.109, 0.201] Small *** 

Gestational age 0.129 [0.106, 0.181] Small *** 
Fetal health (yes/no) 0.126 [0.074, 0.177] Small *** 

IVF pregnancy 0.072 [0.032, 0.120] Very small * 
Parity 0.070 [0.058, 0.120] Very small ns 

Gravidity 0.068 [0.052, 0.121] Very small ns 
Accordingly, we adopt a generalized additive model (GAM) to capture the nonlinear effects of 

key variables on while retaining interpretability. The model is: 

 𝔼𝔼[log (𝑉𝑉)]  =  𝛽𝛽0 + 𝑓𝑓1(𝐶𝐶) + 𝑓𝑓2(𝐽𝐽) + 𝑓𝑓3(𝐾𝐾) + 𝑓𝑓4(𝑊𝑊) + 𝛽𝛽5 𝐴𝐴𝐴𝐴 (5) 

Where 𝑉𝑉 is Y-chromosome concentration; 𝐶𝐶 is age; 𝐽𝐽 is gestational age at testing; 𝐾𝐾 is BMI; 𝑊𝑊 
is X-chromosome concentration; 𝐴𝐴𝐴𝐴  is the fetal-health indicator. The are spline smoothers (the 
basis size of each smoother is given in the text) used to flexibly fit nonlinear effects. 

2.3 Segmented Risk Modeling and Global Optimization 
2.3.1 Optimal BMI Segmentation Based on GAM Residuals 

Within the GAM framework of Section 2.2, let the residual be 𝑒𝑒 = log (𝑉𝑉) −𝑚𝑚�(𝐶𝐶, 𝐽𝐽,𝐾𝐾,𝑊𝑊,𝐴𝐴𝐴𝐴). 
As shown in Figure 1, the “residual–BMI” relationship exhibits systematic shifts in certain regions 
of 𝐾𝐾, necessitating segmentation. 

 
Figure 1 Residual vs. BMI 

Let the breakpoints 𝑏𝑏0 < 𝑏𝑏1 < ⋯ < 𝑏𝑏𝐾𝐾 < 𝑏𝑏𝐾𝐾+1  be (the endpoints are the sample 
minimum/maximum BMI). For any interval [𝑏𝑏𝑖𝑖 , 𝑏𝑏𝑗𝑗), define the cost: 

 cost(𝑖𝑖, 𝑗𝑗) = Var �𝑒𝑒  |  𝐾𝐾 ∈ [𝑏𝑏𝑖𝑖, 𝑏𝑏𝑗𝑗)����������������
Intra-segment residual variance 

+ 𝛼𝛼 ∫  𝑏𝑏𝑗𝑗
𝑏𝑏𝑖𝑖
   � d

d𝐾𝐾
 𝜇̂𝜇𝑒𝑒(𝐾𝐾)�

 2
d𝐾𝐾���������������

Roughness Penalty on Residual Mean Curves 

 (6) 

Under the constraints of a maximum number 𝐾𝐾max of segments and an additional segment 
penalty 𝛾𝛾, we solve the dynamic programming problem: 

 min
𝐾𝐾≤𝐾𝐾max,{𝑏𝑏𝑟𝑟}

  ∑  𝐾𝐾
𝑟𝑟=0 cost(𝑟𝑟, 𝑟𝑟 + 1) + 𝛾𝛾𝛾𝛾 (7) 
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and obtain the optimal set of breakpoints via backtracking. 

2.3.2 Unified Characterization of the Risk Function 

Given BMI segment 𝐾𝐾 and gestational age 𝐽𝐽, define the integrated risk: 

 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾) = [𝜆𝜆FN𝑃𝑃�FN(𝐽𝐽,𝐾𝐾) + 𝜆𝜆FP𝑃𝑃�FP(𝐽𝐽,𝐾𝐾) + 𝜆𝜆fail(1 − 𝑃𝑃�valid(𝐽𝐽,𝐾𝐾))] ⋅ RiskPenalty(𝐽𝐽) ⋅
AdjustmentFactor                                          (8) 

where 𝜆𝜆⋅ > 0 denotes the relative cost weights for error types/failure, RiskPenalty(𝐽𝐽) represents 
the gestational-age penalty for delayed testing, and AdjustmentFactor  is the adjustment factor 
based on the “attainment status” of 𝑌𝑌 concentration, as shown in Figure 2. This expression provides 
a unified measure—across BMI segments—of the risk differences induced by “when to test,” and 
serves as the objective for the subsequent search for the optimal time. 

 
Figure 2 Comparison of risk heatmaps for optimal testing time across BMI groups under different 

error conditions (white asterisks indicate the optimal testing time) 

2.3.3 Estimation of Probability Terms and Segment-Level Aggregation 

𝑃𝑃�FN,𝑃𝑃�FP,𝑃𝑃�fail,𝑃𝑃�valid  are approximated via supervised learning using a gradient-boosting 
implementation that performs binary probability estimation on features such as (𝐽𝐽,𝐾𝐾,𝐶𝐶,𝑊𝑊, … ). 
Within each BMI segment, for a given gestational age, we average (or robustly average) individual 
predicted probabilities for substitution into the components of 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾). This approach leverages 
high-dimensional nonlinear structure without sacrificing interpretability and facilitates updates 
across segments. 

2.3.4 Simulated Annealing Search for the Globally Optimal Testing Time 

Given BMI segment 𝐾𝐾 and risk function 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾), over the feasible gestational window 𝐽𝐽 ∈ [𝐽𝐽, 𝐽𝐽], 
we use simulated annealing (SA) to find the global minimizer: 

 𝐽𝐽⋆  =  arg min
𝐽𝐽∈[𝐽𝐽,𝐽𝐽]

 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾) (9) 

Where 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾) plays the role of the energy, so we write 𝐸𝐸(𝐽𝐽) = 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾). 
Set the initial temperature 𝑇𝑇0 > 0, terminal temperature 𝑇𝑇min > 0, and geometric cooling factor 

𝛼𝛼 ∈ (0,1). Randomly draw a starting point 𝐽𝐽current ∼ Unif([𝐽𝐽, 𝐽𝐽]) within the feasible domain and 
compute the current energy 𝐸𝐸current = 𝑅𝑅(𝐽𝐽current ∣ 𝐾𝐾). Simultaneously set to store the best solution 
found so far and its energy. The main loop starts with 𝑇𝑇 ← 𝑇𝑇0 and terminates when 𝑇𝑇 ≤ 𝑇𝑇min. 

At each temperature level 𝑇𝑇, generate a candidate from the neighborhood of the current solution, 

 𝐽𝐽new = Π[𝐽𝐽,𝐽𝐽] (𝐽𝐽current + 𝛿𝛿 ⋅ 𝜀𝜀), 𝜀𝜀 ∼ 𝒩𝒩(0,1) (10) 

where Π is a projection (or clipping) operator enforcing the gestational bounds, and 𝛿𝛿 > 0 is a 
step-size factor that can be linked to the temperature (in implementation, is used, with 
clipping/projection to [10,22] weeks). Then compute 𝐸𝐸new = 𝑅𝑅(𝐽𝐽new ∣ 𝐾𝐾). This neighborhood and 
clipping strategy is based on a “neighborhood perturbation + clip” implementation. 
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If the candidate improves the objective (𝐸𝐸new < 𝐸𝐸current), accept it unconditionally; otherwise, 
accept the “worse” solution with probability: 

 𝑝𝑝acc = exp (−𝐸𝐸new−𝐸𝐸current
𝑇𝑇

) = exp (𝐸𝐸current−𝐸𝐸new
𝑇𝑇

) (11) 

After acceptance, update (𝐽𝐽current,𝐸𝐸current) ← (𝐽𝐽new,𝐸𝐸new), and refresh the global best pair. This 
criterion allows “uphill moves” with higher probability at high temperature to escape local minima; 
as temperature decreases, the probability of accepting worse solutions decays exponentially. 

Update the temperature geometrically 𝑇𝑇 ← 𝛼𝛼𝛼𝛼, until 𝑇𝑇 ≤ 𝑇𝑇min, then output the recorded optimal 
gestational age. The implementation also provides an equivalent termination in terms of a maximum 
number of iterations 𝑁𝑁max: let: 

 𝑇𝑇𝑖𝑖  =  𝑇𝑇0(𝑇𝑇min
𝑇𝑇0

)𝑖𝑖/𝑁𝑁max  (𝑖𝑖 = 0, … ,𝑁𝑁max) (12) 

so that after exactly perturbations, the temperature reaches 𝑇𝑇min. 

Considering the non-convexity of 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾) and the numerical noise in the probability terms 
𝑃𝑃�FN,𝑃𝑃�FP,𝑃𝑃�fail, we repeat SA multiple times (default 3) for each BMI segment, retaining the run with 
the smallest risk. If multiple runs still fail to produce a usable solution, we fall back to a uniform 
grid search to ensure a feasible solution exists. 

Each “energy” evaluation in SA is computed via 𝐸𝐸(𝐽𝐽) = 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾): first obtain the probability 
terms from the learner, then assemble the risk and multiply by the gestational-age penalty. Hence 
the computational complexity of SA is dominated by the cost of a single risk evaluation, with 
overall complexity 𝒪𝒪(𝑁𝑁max × cost[𝑅𝑅]). 

2.3.5 Perturbation by Testing-Error Scenarios and Robustness Evaluation 

Recognizing that fluctuations in read depth, GC bias, and alignment rate may alter 𝑃𝑃� and 𝑃𝑃�valid, 
we apply random perturbations of layered intensity (light/moderate/severe) to the input features 
under the same estimator, substitute the updated probabilities into 𝑅𝑅(𝐽𝐽 ∣ 𝐾𝐾), and repeat the SA 
search to compare the stability of 𝐽𝐽⋆ under different scenarios. 

2.4 Extended Model for Abnormality Classification in Female Fetuses (SVM) 
Because female fetuses lack information, we construct an independent classifier that does not 

rely on . We first use the F-test (ANOVA) for feature screening across multi-dimensional clinical 
and sequencing features; then we train a nonlinear SVM[9], [10] for classification; we extract 
interpretable rules via a decision tree; and finally, we form a three-tier risk-classification procedure 
through threshold optimization. 

3. Experiments and Results 
Building on the model specification and derivations in Chapter 2, this chapter presents the data 

overview, baseline optimal testing times, the composition of risk and its evolution with gestational 
age, robustness under error scenarios, and empirical results for the female-fetus extended classifier. 
The numbering of figures and tables follows the original manuscript for cross-reference. For 
consistency with Chapter 2, we retain the previously defined notation and segmentation scheme. 

3.1 Data Description 
After GAM modeling and residual analysis, optimal segmentation of BMI into six groups was 

determined via dynamic programming: 
(20.7,28.6], (28.6,32.0], (32.0,32.5], (32.5,33.9], (33.9,34.5], (34.5,46.9] ; systematic shifts in 
residuals versus BMI appear in the 28–35 range, validating the need for segmentation, as shown in 
Figures 3, 4, and 5. 
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Figure 3 Boxplots of residuals by segment 

 
Figure 4 Residual vs. BMI (with segmentation lines) 

The sample size, BMI range, and average BMI for each segment are also used for subsequent 
risk aggregation and optimal-time calculation. 

3.2 GAM Fitting and Key Variable Effects 
Following dependence screening, the original manuscript fits with a GAM using the 

nonlinear/linear combination of age, gestational age , BMI , X-chromosome concentration , and 
fetal-health indicator , with smoother basis sizes of , and provides detailed spline coefficients as 
shown in Table 2. 

Table 2 Detailed spline coefficients of the GAM 
Variable Spline coefficients (in order of basis functions) 

Age C 0.0194,-0.0092,0.0103,0.0017,0.0044,0.0016,-0.0053,0.0012,-0.0134,-
0.0018,0.0196,0.0218,-0.0020,-0.0310,0.0056 

Gestational Age 
J 

-0.0029,-0.0035,0.0177,-0.0024,0.0155,-0.0088,-
0.0020,0.0143,0.0209,0.0168,0.0113,0.0049,-0.0100 

Maternal BMI K -0.0016,0.0075,0.0201,0.0347,0.0170,0.0229,0.0158,0.0024,0.0092,0.0145,-0.0075,-
0.0375,-0.0468 

X Chromosome 
Concentration W -0.0539,-0.0511,-0.0253,-0.0121,0.0388,0.0917,0.1460,0.0029 

Fetal Health AE 0.0875 

3.3 Baseline Optimal Testing Time 
Under the “no-error baseline” scenario, combining XGBoost probability estimates with the risk 

function and using simulated annealing to search across BMI segments yields the optimal NIPT 
testing time and corresponding minimum risk values shown in Table 3: for groups 1–6, the optimal 
weeks are approximately 11.1, 10.6, 11.6, 11.7, 10.9, and 10.0; the corresponding minimum risks 
are 2.3048, 1.9194, 2.1283, 2.7160, 1.0201, and 1.8519. Compared with the actual testing weeks, 
these optimal times are generally earlier by 4.4–8.4 weeks; the highest-BMI group (group 6) has the 
earliest recommendation (10.0 weeks) and the largest improvement (8.4 weeks). In addition, BMI 
and the optimal testing time show a moderate negative correlation (), suggesting earlier testing for 
higher BMI. 
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Table 3 Baseline optimal NIPT testing time by BMI group 

Group BMI Range Sample 
Size 

Average 
BMI 

Actual 
Post-

Pregnancy 

Optimal 
Timing 

Risk 
Value 

Improvement 
(Weeks) 

1 ≤28.6 57 27.6 16.6 11.1 2.3048 -5.6 
2 (28.6,32.0) 456 30.4 16.8 10.6 1.9194 -6.2 
3 (32.0,32.5) 66 32.2 16.6 11.6 2.1283 -5.0 
4 (32.5,33.9) 164 33.2 16.2 11.7 2.7160 -4.4 
5 (33.9,34.5) 55 34.2 16.0 10.9 1.0201 -5.0 
6 >34.5 197 36.8 18.4 10.0 1.8519 -8.4 

3.4 Composition of Risk and Its Evolution with Gestational Age 
To explain the above optimal times, the manuscript decomposes the integrated risk into 

components (delay penalty, false negative, false positive, and test failure). Figure 5 shows that the 
delay penalty dominates across groups (average contribution >60%); the test-failure risk is higher in 
high-BMI groups (groups 4 and 6), consistent with clinical experience. 

 
Figure 5 Decomposition of risk components by BMI segment 

3.5 Robustness under Error Scenarios 
Accounting for technical fluctuations in read depth, GC bias, and alignment rate, three error 

scenarios—light, moderate, and severe—are defined. Features are perturbed accordingly while 
reusing the same estimator and optimization flow. Results are shown in Table 4: the optimal time in 
nearly all BMI groups shifts to 10.0 weeks (groups 1–5 move earlier by about 1.1, 0.6, 1.6, 1.7, and 
0.9 weeks, respectively, relative to the baseline; group 6 remains at 10.0), indicating a high degree 
of consistency under error. 

Table 4. Changes in optimal NIPT testing time under different error scenarios 

BMI Grouping 
Baseline Minor error Moderate error Severe error 

Time Risk Value time △week time △week time △week 
1 11.1 2.3048 10.0 -1.1 10.0 -1.1 10.0 -1.1 
2 10.6 1.9194 10.0 -0.6 10.0 -0.6 10.0 -0.6 
3 11.6 2.1283 10.0 -1.6 10.0 -1.6 10.0 -1.6 
4 11.7 2.7160 10.0 -1.7 10.0 -1.7 10.0 -1.7 
5 10.9 1.0201 10.0 -0.9 10.0 -0.9 10.0 -0.9 
6 10.0 1.8519 10.0 0.0 10.0 0.0 10.0 0.0 

3.6 Extended Model for Female-Fetus Abnormality Classification 
On female-fetus samples without information, an SVM classifier is trained and reports ROC 

AUC = 0.9550, indicating good classification performance, as shown in Figure 6. 
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Figure 6 ROC curve 

With the accompanying sensitivity analysis, the 18-chromosome value contributes the most, 
followed by the X- and 13-chromosome values, providing a basis for rule extraction and threshold 
optimization. 

4. Conclusion 
This study addresses two core questions for NIPT “when to test for the best outcome” and “how 

to classify abnormalities in female fetuses”—by proposing an individualized decision framework 
built on nonlinear statistical modeling, segmented risk metrics, and global optimization. Empirical 
results show that, on real data, the six BMI segments derived from residuals effectively alleviate 
systematic bias of a single model across populations. The integrated risk function organically 
combines false negatives, false positives, and test failures with a gestational-age penalty and 
attainment status, enabling the testing time to be directly tied to clinical costs in an interpretable 
way. On this basis, simulated annealing yields optimal testing times concentrated in 10.0–11.7 
weeks, significantly earlier than actual testing gestational ages, and exhibiting high consistency 
across multiple error scenarios. The female-fetus extension attains an AUC of 0.9550 without 
relying on Y-chromosome information, completing applicability across fetal sexes. We emphasize 
that limitations remain: the setting of weight and penalty parameters requires further prospective 
clinical evidence; data sources and population composition may affect generalizability. Future work 
can pursue external validation on multi-center data, clinical calibration of cost weights, deeper 
integration into physician workflows, and multimodal fusion with ultrasound and metabolic 
indicators. Overall, this paper presents a reusable, interpretable, and noise-robust path to 
individualized determination of NIPT testing time and provides an effective supplement for female-
fetus classification, with potential for clinical translation. 
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